V(x)=0.05x^2-0.51x^2+1.81x+13.35

Simple and best practice solution for V(x)=0.05x^2-0.51x^2+1.81x+13.35 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for V(x)=0.05x^2-0.51x^2+1.81x+13.35 equation:



(V)=0.05V^2-0.51V^2+1.81V+13.35
We move all terms to the left:
(V)-(0.05V^2-0.51V^2+1.81V+13.35)=0
We get rid of parentheses
-0.05V^2+0.51V^2-1.81V+V-13.35=0
We add all the numbers together, and all the variables
0.46V^2-0.81V-13.35=0
a = 0.46; b = -0.81; c = -13.35;
Δ = b2-4ac
Δ = -0.812-4·0.46·(-13.35)
Δ = 25.2201
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$V_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$V_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$V_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-0.81)-\sqrt{25.2201}}{2*0.46}=\frac{0.81-\sqrt{25.2201}}{0.92} $
$V_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-0.81)+\sqrt{25.2201}}{2*0.46}=\frac{0.81+\sqrt{25.2201}}{0.92} $

See similar equations:

| 500=10.25x+100.00 | | (4c^2)+2c-4=0 | | 1=5(x-4)-2x= | | b+1/2=1/12 | | y–17=-17 | | 3(1-9x)+4x=-43 | | 12=3w+21 | | 10(2x+2)=16x-16 | | 88=12+x | | 8=5r=-2 | | -100u-156-16u^2=0 | | -3b-5=16 | | 10x+25=50x | | -96=-4c | | 20^(3x)=0.001 | | 3(w+4)+2w=27 | | 7+6x=-33+-2x | | d=0.8571428571= | | 1/4x-22=13 | | 8x-6°=98° | | 84=4/9x+1/5x | | a-5a=-8a | | 5x+17=-37-4x | | 7+6x=33+-2x | | 10x+25=50x= | | 9+3x=2x-1=67 | | 4(n-3)+2n=12* | | 3/3a+14=8 | | 107-12x=66 | | 2/9-5n/18=1/9 | | -6k–3=39 | | 12x-35=-83 |

Equations solver categories